Transpose of a Matrix

Given two matrices, we need to add the two matrices and give new matrix.

Transpose of a matrix :  The transpose of a matrix is a new matrix whose rows are the columns and columns are the rows of the original.

Example

Input : A[4][4] = { {1, 4, 7, 9},
                {1, 6, 7, 6},
                {6, 3, 7, 2},
                {4, 4, 4, 4}}

Output matrix will be :
                { {1, 1, 6, 4},
                {4, 6, 3, 4},
                {7, 7, 7, 4},
                {9, 6, 2, 4}}

Algorithm

Step 1 : Create an auxiliary dummy matrix which stores the transpose of the matrix.
Step 2 : For a row in the first matrix, make it as first column in new constructed matrix.
Step 3 : move to next row and do it for all the rows.
        B[i][j] = A[j][i] , B is Transpose of A
Step 4 : After completing all the rows, print the new matrix, it is Transpose of the given matrix.

Algorithm working

C++ Program

#include <bits/stdc++.h>
using namespace std;
#define N 4
int main()
{
	int A[N][N] = { {1, 4, 7, 9},
					{1, 6, 7, 6},
					{6, 3, 7, 12},
					{4, 4, 4, 4}};

	int B[N][N] ;
	
	
	for(int i=0; i <N; i++)
	{
		for(int j=0; j<N; j++)
			{
				B[i][j] = A[j][i];
			}
	}
	
	for(int i=0;i<N;i++)
	{
		for(int j=0;j<N;j++)
			cout<<B[i][j]<<" ";
		cout<<endl;
	}
	
	
	return 0;
}
Try It


Next > < Prev
Scroll to Top