Удаљеност најближе ћелије која има 1 у бинарној матрици


Ниво тешкоће Тежак
Често питани у Аццентуре амазонка Хонеивелл ХСБЦ Хулу твиттер
Ред Претрага у ширину Графикон матрица Ред

Изјава о проблему

Проблем „Удаљеност најближе ћелије која има 1 у бинарној матрици“ наводи да сте добили бинарну датотеку матрица(садржи само 0 и 1) са најмање једним 1. Нађите удаљеност најближе ћелије која има 1 у бинарној матрици за све елементе матрице, овде растојање између две ћелије (к1, и1) и (к2, и2 ) је | к2 - к1 | + | и2 - и1 |.

Примери

{
{0, 1, 0}
{0, 0, 0}
{1, 0, 0}
}
{
{1, 0, 1}
{1, 1, 2}
{0, 1, 2}
}

Објашњење: Можемо видети да ћелије које имају 1 имају 0 у резултујућој матрици и ћелије на удаљености од 1 од ћелија које имају 1. Ове ћелије имају 1 као излаз, а слично томе, растојања су израчуната за друге ћелије.

{
{0, 0, 0}
{0, 0, 0}
{1, 0, 1}
}
{
{2, 3, 2}
{1, 2, 1}
{0, 1, 0}
}

Наивни приступ

За сваки елемент матрице пређите целину матрица и пронађите ћелију са најмање удаљености која има 1 у матрици.

  1. Створите низ величине исте као матрица низа. Покрените две угнежђене петље да бисте прешли све елементе матрице.
  2. За сваки елемент у матрици покрените још две угнежђене петље да бисте прешли сваки елемент матрице, дозволите нам да то учинимо тренутним елементом. За све тренутне елементе који су 1 пронађите елемент минималне удаљености и сачувајте ту удаљеност у низу анс.
  3. Одштампајте низ анс.

Анализа сложености

Сложеност времена = На2 * м2)
Сложеност простора = На М)
где су н и м редови и ступци дате матрице.

Пошто прелазимо целу матрицу за сваку ћелију у матрици. То чини алгоритам да ради у вишој временској сложености. Сложеност простора је само због складиштења резултата, али сам алгоритам захтева константан простор. Да смо једноставно штампали излаз, онда би и ова сложеност простора била смањена.

код

Јава код за проналажење Удаљеност најближе ћелије која има 1 у бинарној матрици

class DistanceOfNearestCellHaving1InABinaryMatrix {
    private static void minimumDistance(int[][] matrix) {
        int n = matrix.length;
        int m = matrix[0].length;

        int[][] ans = new int[n][m];

        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                int minDist = Integer.MAX_VALUE;
                for (int x = 0; x < n; x++) {
                    for (int y = 0; y < m; y++) {
                        if (matrix[x][y] == 1) {
                            int dist = Math.abs(x - i) + Math.abs(y - j);
                            minDist = Math.min(minDist, dist);
                        }
                    }
                }
                ans[i][j] = minDist;
            }
        }

        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                System.out.print(ans[i][j] + " ");
            }
            System.out.println();
        }
        System.out.println();
    }

    public static void main(String[] args) {
        int matrix1[][] = new int[][]{
                {0, 1, 0},
                {0, 0, 0},
                {1, 0, 0}
        };
        minimumDistance(matrix1);

        int matrix2[][] = new int[][]{
                {0, 0, 0},
                {0, 0, 0},
                {1, 0, 1}
        };
        minimumDistance(matrix2);
    }
}
1 0 1 
1 1 2 
0 1 2 

2 3 2 
1 2 1 
0 1 0

Ц ++ код за проналажење Удаљеност најближе ћелије која има 1 у бинарној матрици

#include<bits/stdc++.h> 
using namespace std; 

void minimumDistance(vector<vector<int>> &matrix) {
    int n = matrix.size();
    int m = matrix[0].size();
    
    int ans[n][m];
    
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            int minDist = INT_MAX;
            for (int x = 0; x < n; x++) {
                for (int y = 0; y < m; y++) {
                    if (matrix[x][y] == 1) {
                        int dist = abs(x - i) + abs(y - j);
                        minDist = std::min(minDist, dist);
                    }
                }
            }
            ans[i][j] = minDist;
        }
    }
    
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
              cout<<ans[i][j]<<" ";
        }
        cout<<endl;
    }
    cout<<endl;
}

int main() {
    // Example 1
    vector<vector<int>> matrix1 = {
            {0, 1, 0},
            {0, 0, 0},
            {1, 0, 0}
    };
    minimumDistance(matrix1);

    // Example 2
    vector<vector<int>> matrix2 = {
            {0, 0, 0},
            {0, 0, 0},
            {1, 0, 1}
    };
    minimumDistance(matrix2);
    
    return 0;
}
1 0 1 
1 1 2 
0 1 2 

2 3 2 
1 2 1 
0 1 0

Оптималан приступ

Бољи приступ је направити БФС почев од свих 1 у датој матрици. Растојање свих 1 је нула и за све суседне минимално растојање је једно више од овог.

  1. Креирање ред координата, који се користи за чување (реда, колоне) елемента. Направите поредак анс величине као и низ матрица.
  2. Пређите кроз све елементе матрице и гурните координате елемената који су 1 у ред.
  3. Иницијализујте променљиву минДистанце као 0. Иако ред није празан, поновите кораке 4 и 5.
  4. Иницијализујте променљиву величину као величину реда. Покрените петљу за и једнако је 0 величини (није укључено). На свакој итерацији искочите елемент из реда. Поставите анс [ров] [цол] као минДистанце и ставите у ред све важеће суседне елементе овог елемента који су 0 у матричном низу и поставите их као 1 у матричном низу.
  5. Повећати минДистанце.
  6. Одштампајте низ анс.

Анализа сложености

Сложеност времена = На М)
Сложеност простора = На М)
где су н и м редови и ступци дате матрице.

Алгоритам је веома сличан БФС-у за графиконе и самим тим је узето само О (Н * М) време.

Објашњење

Размотримо пример,
{
{КСНУМКС, КСНУМКС, КСНУМКС}
{КСНУМКС, КСНУМКС, КСНУМКС}
{КСНУМКС, КСНУМКС, КСНУМКС}
}

Удаљеност најближе ћелије која има 1 у бинарној матрици

код

Јава код за проналажење удаљености најближе ћелије која има 1 у бинарној матрици

import java.util.LinkedList;
import java.util.Queue;
class Optimal {
    private static void minimumDistance(int[][] matrix) {
        int n = matrix.length;
        int m = matrix[0].length;

        // create an array ans of size same as matrix array
        int ans[][] = new int[n][m];

        // create a queue of coordinates
        // push all the elements that are equals to 1 in the matrix array to the queue
        Queue<Coordinate> queue = new LinkedList<>();
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                if (matrix[i][j] == 1) {
                    queue.add(new Coordinate(i, j));
                }
            }
        }

        // initialize minDistance as 0
        int minDistance = 0;

        while (!queue.isEmpty()) {
            // initialize size as size of queue
            int size = queue.size();

            // Run a loop size times
            for (int i = 0; i < size; i++) {
                // remove an element from queue
                Coordinate curr = queue.poll();

                // ans to this coordinate is minDistance
                ans[curr.row][curr.col] = minDistance;

                // enqueue all the valid adjacent cells of curr that are equals to
                // 0 in the matrix array and set them as 1

                // left adjacent
                int leftRow = curr.row - 1;
                int leftCol = curr.col;
                if ((leftRow >= 0 && leftRow < n) && (leftCol >= 0 && leftCol < m)) {
                    if (matrix[leftRow][leftCol] == 0) {
                        queue.add(new Coordinate(leftRow, leftCol));
                        matrix[leftRow][leftCol] = 1;
                    }
                }

                // right adjacent
                int rightRow = curr.row + 1;
                int rightCol = curr.col;
                if ((rightRow >= 0 && rightRow < n) && (rightCol >= 0 && rightCol < m)) {
                    if (matrix[rightRow][rightCol] == 0) {
                        queue.add(new Coordinate(rightRow, rightCol));
                        matrix[rightRow][rightCol] = 1;
                    }
                }

                // up adjacent
                int upRow = curr.row;
                int upCol = curr.col + 1;
                if ((upRow >= 0 && upRow < n) && (upCol >= 0 && upCol < m)) {
                    if (matrix[upRow][upCol] == 0) {
                        queue.add(new Coordinate(upRow, upCol));
                        matrix[upRow][upCol] = 1;
                    }
                }

                // down adjacent
                int downRow = curr.row;
                int downCol = curr.col - 1;
                if ((downRow >= 0 && downRow < n) && (downCol >= 0 && downCol < m)) {
                    if (matrix[downRow][downCol] == 0) {
                        queue.add(new Coordinate(downRow, downCol));
                        matrix[downRow][downCol] = 1;
                    }
                }
            }

            // increment minimum distance
            minDistance++;
        }

        // print the elements of the ans array
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                System.out.print(ans[i][j] + " ");
            }
            System.out.println();
        }
        System.out.println();
    }

    public static void main(String[] args) {
        // Example 1
        int matrix1[][] = new int[][]{
                {0, 1, 0},
                {0, 0, 0},
                {1, 0, 0}
        };
        minimumDistance(matrix1);

        // Example 2
        int matrix2[][] = new int[][]{
                {0, 0, 0},
                {0, 0, 0},
                {1, 0, 1}
        };
        minimumDistance(matrix2);
    }

    // class representing coordinates of a cell in matrix
    static class Coordinate {
        int row;
        int col;

        public Coordinate(int row, int col) {
            this.row = row;
            this.col = col;
        }
    }
}
1 0 1 
1 1 2 
0 1 2 

2 3 2 
1 2 1 
0 1 0

Ц ++ код за проналажење Удаљеност најближе ћелије која има 1 у бинарној матрици

#include<bits/stdc++.h> 
using namespace std; 

// class representing coordinates of a cell in matrix
class Coordinate {
    public:
    int row;
    int col;
    
    Coordinate(int r, int c) {
        row = r;
        col = c;
    }
};

void minimumDistance(vector<vector<int>> &matrix) {
    int n = matrix.size();
    int m = matrix[0].size();
    
    // create an array ans of size same as matrix array
    int ans[n][m];
    
    // create a queue of coordinates
    // push all the elements that are equals to 1 in the matrix array to the queue
    queue<Coordinate> q;
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            if (matrix[i][j] == 1) {
                Coordinate coordinate(i, j);
                q.push(coordinate);
            }
        }
    }
    
    // initialize minDistance as 0
    int minDistance = 0;
    
    while (!q.empty()) {
        // initialize size as size of queue
        int size = q.size();
        
        // Run a loop size times
        for (int i = 0; i < size; i++) {
            // remove an element from queue
            Coordinate curr = q.front();
            q.pop();
            
            // ans to this coordinate is minDistance
            ans[curr.row][curr.col] = minDistance;
            
            // enqueue all the valid adjacent cells of curr that are equals to
            // 0 in the matrix array and set them as 1
            
            // left adjacent
            int leftRow = curr.row - 1;
            int leftCol = curr.col;
            if ((leftRow >= 0 && leftRow < n) && (leftCol >= 0 && leftCol < m)) {
                if (matrix[leftRow][leftCol] == 0) {
                    Coordinate cLeft(leftRow, leftCol);
                    q.push(cLeft);
                    matrix[leftRow][leftCol] = 1;
                }
            }
            
            // right adjacent
            int rightRow = curr.row + 1;
            int rightCol = curr.col;
            if ((rightRow >= 0 && rightRow < n) && (rightCol >= 0 && rightCol < m)) {
                if (matrix[rightRow][rightCol] == 0) {
                    Coordinate cRight(rightRow, rightCol);
                    q.push(cRight);
                    matrix[rightRow][rightCol] = 1;
                }
            }
            
            // up adjacent
            int upRow = curr.row;
            int upCol = curr.col + 1;
            if ((upRow >= 0 && upRow < n) && (upCol >= 0 && upCol < m)) {
                if (matrix[upRow][upCol] == 0) {
                    Coordinate cUp(upRow, upCol);
                    q.push(cUp);
                    matrix[upRow][upCol] = 1;
                }
            }
            
            // down adjacent
            int downRow = curr.row;
            int downCol = curr.col - 1;
            if ((downRow >= 0 && downRow < n) && (downCol >= 0 && downCol < m)) {
                if (matrix[downRow][downCol] == 0) {
                    Coordinate cDown(downRow, downCol);
                    q.push(cDown);
                    matrix[downRow][downCol] = 1;
                }
            }
        }
        
        // increment minimum distance
        minDistance++;
    }
    
    // print the elements of the ans array
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            cout<<ans[i][j]<<" ";
        }
        cout<<endl;
    }
    cout<<endl;
}

int main() {
    // Example 1
    vector<vector<int>> matrix1 = {
            {0, 1, 0},
            {0, 0, 0},
            {1, 0, 0}
    };
    minimumDistance(matrix1);

    // Example 2
    vector<vector<int>> matrix2 = {
            {0, 0, 0},
            {0, 0, 0},
            {1, 0, 1}
    };
    minimumDistance(matrix2);
    
    return 0;
}
1 0 1 
1 1 2 
0 1 2 

2 3 2 
1 2 1 
0 1 0