回文子串查询


难度级别
经常问 亚马逊 ByteDance 易趣 Expedia的 谷歌 意会 微软 贝宝 Pinterest 新思
动态编程 哈希 查询问题

问题陈述

问题“回文子字符串查询”指出给您一个字符串和一些查询。 对于这些查询,您必须确定从该查询中形成的子字符串是否是回文。

使用案列

String str = "aaabbabbaaa"

Queries q[] = { {2, 3}, {2, 8},{5, 7}, {3, 7} }
The Substring [2 3] is not a palindrome

The Substring [2 8] is a palindrome

The Substring [5 7] is not a palindrome

The Substring [3 7] is a palindrome

说明:子字符串[2,8]是回文,因此结果为YES。 子字符串是“ abbabba”。

途径

根据每个查询,我们给出了一个字符串和一些查询。 我们必须确定子串的形式是 回文 或不。 使用字串 哈希 解决这个问题。 我们将使用两个数组,一个用于原始字符串,另一个用于反向字符串。 然后,我们将存储String的哈希值。 在这里,哈希值可以彼此不同。 假设我们为String []取哈希值,为反向String取反Hash值。 我们将使用前缀和后缀数组。

假设我们有String str:“ aabbbababaaa”。

我们将把str的哈希值存储为

前缀[i] = str [0] + str [1] * 101 + str [2] * 1012  +………。+ str [i-1] * 101 *I-1  .

对于前缀[i]的每个值。 我们将具有以下值:

Prefix[0]=0,
Prefix[1]= 97 + 97 *101, ( 0+ ASCII value of a)
Prefix[2]= 97 + 97 *101 + 98 *101^2
Prefix[3]= 97 + 97 *101 + 98 *101^2 + 98 *101^3 ( 0 + ASCII value of a’s and ASCII value of b).
.
.
.
Prefix [12]= 97 + 97 *101 + 98 *101^2 + 98 *101^3 +…… +97 *101^11 as length of String is 12.

 

因此,现在,许多人都在思考为什么这是以这种类型的方式存储哈希值的方式。 答案是通过使用简单的公式以最少的时间复杂度来搜索任何给定子字符串的哈希值的方法。

哈希值(左,右)= prefix [Right + 1] – prefix [Left]。

左右可以是子字符串的起点,如果我们要查找字符串(2,4)=“ bbb”的哈希值,则简单地将是:

prefix [5] – prefix [2] = 98 * 1013 + 98 * 1014 + 98 * 1015.

该值将有助于发现回文。 因为我们将对后缀数组做同样的事情,但是这次是从最后开始,让我们看看如何做。

字符串str:“ aabbbababaaa”。

suffix[i] = str[n-1]+ str[n-2] *101 + str[n-3]*1022  + ……….+ str[n-i]*101*i-1  .
suffix[0]=0,
suffix [1]= 97 + 97 *101, ( 0+ ASCII value of a)
suffix [2]= 97 + 97 *101 + 97 *101^2,
suffix [3]= 97 + 97 *101 + 97 *101^2 + 98 *101^3 ( 0 + ASCII value of a’s and ASCII value of b).
.
.
.
.
suffix [11]= 97 + 97 *101 + 97 *101^2 + 98 *101^3 +…… +97 *101^10 as length of String is 11.

现在,我们可以使用以下公式计算反向哈希值的值:

反向哈希值(左,右):哈希值(右,左)=后缀[n-左] –后缀[n-右1]。

使用案列

例如:字符串str:“ aabbbababaaa”。

反向哈希值:substring(2,4):

反转“ bbba”的值为“ abbb”

后缀[11-1] –后缀[11-4-1] =后缀[10]-后缀[6]。

现在,我们有了一个方程式来找出回文是否存在。

现在我们有了两个数组作为前缀和后缀,我们之间有了关系。

(前缀[Right +1] –前缀[Left])  =  (后缀[n –左] –后缀[n –右1])

(101离开)(101n –对– 1)

 

回文子串查询

代码

Palindrome子字符串查询的C ++代码

#include<iostream>

using namespace std;

#define p 101
#define MOD 1000000007

struct Queries
{
    int left, right;
};
bool CheckPalindrome(string str, int left, int right)
{
    while (right > left)
        if (str[left++] != str[right--])
            return (false);
    return (true);
}
unsigned long long int moduloPower(unsigned long long int base,unsigned long long int exponent)
{
    if (exponent == 0)
        return 1;
    if (exponent == 1)
        return base;

    unsigned long long int temp = moduloPower(base, exponent / 2);

    if (exponent % 2 == 0)
        return (temp % MOD * temp % MOD) % MOD;
    else
        return (((temp % MOD * temp % MOD) % MOD)* base % MOD)% MOD;
}

unsigned long long int ModuloMultiplicativeInverse(unsigned long long int n)
{
    return moduloPower(n, MOD - 2);
}

void HashPrefix( string str, int n, unsigned long long int prefix[], unsigned long long int powerArr[])
{
    prefix[0] = 0;
    prefix[1] = str[0];

    for (int i = 2; i <= n; i++)
        prefix[i] = (prefix[i - 1] % MOD + (str[i - 1] % MOD * powerArr[i - 1] % MOD) % MOD) % MOD;

    return;
}

void HashSuffix( string str, int n, unsigned long long int suffix[], unsigned long long int powerArr[])
{
    suffix[0] = 0;
    suffix[1] = str[n - 1];

    for (int i = n - 2, j = 2; i >= 0 && j <= n; i--, j++)
        suffix[j] = (suffix[j - 1] % MOD+ (str[i] % MOD* powerArr[j - 1] % MOD)% MOD)% MOD;

    return;
}
void GetQueryOutput(string str, Queries q[], int m, int n, unsigned long long int prefix[], unsigned long long int suffix[], unsigned long long int powerArr[])
{
    for (int i = 0; i <= m - 1; i++)
    {
        int left = q[i].left;
        int right = q[i].right;

        unsigned long long HashValue= ((prefix[right + 1] - prefix[left] + MOD) % MOD* ModuloMultiplicativeInverse(powerArr[left]) % MOD)% MOD;

        unsigned long long reverseHashValue= ((suffix[n - left] - suffix[n - right - 1] + MOD) % MOD* ModuloMultiplicativeInverse(powerArr[n - right - 1]) % MOD)% MOD;

        if (HashValue == reverseHashValue)
        {
            if (CheckPalindrome(str, left, right) == true)
                cout<<"The Substring ["<< left <<" "<<right<<"] is a palindrome\n";
            else
                cout<<"The Substring ["<< left <<" "<<right<<"] is a palindrome\n";
        }

        else
            cout<<"The Substring ["<< left <<" "<<right<<"] is not a palindrome\n";
    }

    return;
}
void assginedPowers(unsigned long long int powerArr[], int n)
{
    powerArr[0] = 1;

    for (int i = 1; i <= n; i++)
        powerArr[i] = (powerArr[i - 1] % MOD * p % MOD) % MOD;

    return;
}
int main()
{
    string str = "aaabbabbaaa";
    int n = str.length();

    unsigned long long int powerArr[n + 1];

    assginedPowers(powerArr, n);

    unsigned long long int prefix[n + 1];
    unsigned long long int suffix[n + 1];

    HashPrefix(str, n, prefix, powerArr);
    HashSuffix(str, n, suffix, powerArr);

    Queries q[] = { {2, 3}, {2, 8},{5, 7}, {3, 7} };
    int m = sizeof(q) / sizeof(q[0]);

    GetQueryOutput(str, q, m, n, prefix, suffix, powerArr);
    return (0);
}
The Substring [2 3] is not a palindrome
The Substring [2 8] is a palindrome
The Substring [5 7] is not a palindrome
The Substring [3 7] is a palindrome

回文子字符串查询的Java代码

public class PalindromeSubstringQuery
{
    static int p = 101;
    static int MOD = 1000000007;

    public static class Queries
    {
        int left, right;
        public Queries(int left, int right)
        {
            this.left = left;
            this.right = right;
        }
    }
    public static boolean CheckPalindrome(String str, int left, int right)
    {
        while (right > left)
        {
            if (str.charAt(left++) != str.charAt(right--))
                return (false);
        }
        return (true);
    }
    public static int moduloPower(int base, int exponent)
    {
        if (exponent == 0)
        {
            return 1;
        }
        if (exponent == 1)
        {
            return base;
        }
        int temp = moduloPower(base, exponent / 2);

        if (exponent % 2 == 0)
        {
            return (temp % MOD * temp % MOD) % MOD;
        }
        else
        {
            return (((temp % MOD * temp % MOD) % MOD) * base % MOD) % MOD;
        }
    }
    public static int ModuloMultiplicativeInverse(int n)
    {
        return moduloPower(n, MOD - 2);
    }

    public static void HashPrefix(String str, int n,int prefix[], int powerArr[])
    {
        prefix[0] = 0;
        prefix[1] = str.charAt(0);

        for (int i = 2; i <= n; i++)
        {
            prefix[i] = (prefix[i - 1] % MOD+ (str.charAt(i - 1) % MOD * powerArr[i - 1] % MOD) % MOD) % MOD;
        }
        return;
    }
    public static void HashSuffix(String str, int n,int suffix[], int powerArr[])
    {
        suffix[0] = 0;
        suffix[1] = str.charAt(n - 1);

        for (int i = n - 2, j = 2; i >= 0 && j <= n; i--, j++)
        {
            suffix[j] = (suffix[j - 1] % MOD + (str.charAt(i) % MOD* powerArr[j - 1] % MOD) 	% MOD) % MOD;
        }
        return;
    }
    public static void GetQueryOutput( String str, Queries q[], int m, int n, int prefix[], int suffix[], int powerArr[])
    {
        for (int i = 0; i <= m - 1; i++)
        {
            int left = q[i].left;
            int right = q[i].right;

            long HashValue= ((prefix[right + 1] - prefix[left] + MOD) % MOD* ModuloMultiplicativeInverse(powerArr[left]) % MOD)% MOD;

            long reverseHashValue= ((suffix[n - left] - suffix[n - right - 1] + MOD) % MOD* ModuloMultiplicativeInverse(powerArr[n - right - 1]) % MOD)% MOD;

            if (HashValue == reverseHashValue)
            {
                if (CheckPalindrome(str, left, right) == true)
                {
                    System.out.print("The Substring ["+left+" "+ right+"] is a palindrome\n");
                }
                else
                {
                    System.out.print("The Substring ["+left+" "+ right+"] is not a palindrome\n");
                }
            }
            else
            {
                System.out.print("The Substring ["+left+" "+ right+"] is not a palindrome\n");
            }
        }
        return;
    }
    public static void assginedPowers(int powerArr[], int n)
    {
        powerArr[0] = 1;

        for (int i = 1; i <= n; i++)
            powerArr[i] = (powerArr[i - 1] % MOD * p % MOD) % MOD;

        return;
    }
    public static void main(String[] args)
    {
        String str = "aaabbabbaaa";
        int n = str.length();

        int[] powerArr = new int[n + 1];

        assginedPowers(powerArr, n);

        int[] prefix = new int[n + 1];
        int[] suffix = new int[n + 1];

        HashPrefix(str, n, prefix, powerArr);
        HashSuffix(str, n, suffix, powerArr);

        Queries q[] = { new Queries(2, 3), new Queries(2, 8),new Queries(5, 7), new Queries(3, 7) };

        int m = q.length;

        GetQueryOutput(str, q, m, n, prefix, suffix, powerArr);
    }
}
The Substring [2 3] is not a palindrome
The Substring [2 8] is a palindrome
The Substring [5 7] is not a palindrome
The Substring [3 7] is a palindrome

复杂度分析

时间复杂度

O(N + Q) 哪里 “N” 是字符串的大小,并且 “ Q” 是要执行的查询数。 因此,该算法具有线性时间复杂度,因为我们在O(1)时间内回答了每个查询。

空间复杂度

上) 哪里 “N” 是给定字符串中的字符数。 因为我们已经存储了字符串的哈希值。 我们使用了额外的空间。